Option Risk Measurement with Time-dependent Parameters

نویسنده

  • P. H. Yuen
چکیده

In value-at-risk (VaR) methodology of option risk measurement, the determination of market values of the current option positions under various market scenarios is critical. Under the full revaluation and factor sensitivity approach which are accepted by regulators, accurate revaluation and precise factor sensitivity calculation of options in response to significant moves in market variables are important for measuring option risks in terms of VaR figures. This paper provides a method for pricing equity options in the constant elasticity variance (CEV) model environment using the Lie-algebraic technique when the model parameters are time-dependent. Analytical solutions for option values incorporating time-dependent model parameters are obtained in various CEV processes. The numerical results, which are obtained by employing a very efficient computing algorithm similar to the one proposed by Schroder [11], indicate that the option values are sensitive to the time-dependent volatility term structures. It is also possible to generate further results using various functional forms for interest rate and dividend term structures. From the analytical option pricing formulae, one can achieve more accuracy to compute factor sensitivities using more realistic term-structures in volatility, interest rate and dividend yield. In view of the CEV model being empirically considered to be a better candidate in equity option pricing than the traditional Black–Scholes model, more precise risk management in equity options can be achieved by incorporating term-structures of interest rates, volatility and dividend into the CEV option valuation model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risk measurement and Implied volatility under Minimal Entropy Martingale Measure for Levy process

This paper focuses on two main issues that are based on two important concepts: exponential Levy process and minimal entropy martingale measure. First, we intend to obtain   risk measurement such as value-at-risk (VaR) and conditional value-at-risk (CvaR) using Monte-Carlo methodunder minimal entropy martingale measure (MEMM) for exponential Levy process. This Martingale measure is used for the...

متن کامل

Preference-Free Option Pricing with Path-Dependent Volatility: A Closed-Form Approach

This paper shows how one can obtain a continuous-time preference-free option pricing model with a path-dependent volatility as the limit of a discrete-time GARCH model. In particular, the continuous-time model is the limit of a discrete-time GARCH model of Heston and Nandi (1997) that allows asymmetry between returns and volatility. For the continuous-time model, one can directly compute closed...

متن کامل

Option Pricing in the Presence of Operational Risk

In this paper we distinguish between operational risks depending on whether the operational risk naturally arises in the context of model risk. As the pricing model exposes itself to operational errors whenever it updates and improves its investment model and other related parameters. In this case, it is no longer optimal to implement the best model. Generally, an option is exercised in a jump-...

متن کامل

Comparison of p300 in risk-seeker and risk-averse people during simple gambling task

Risk preference, the degree of tendency to take risk, has a fundamental role at individual and social health and is divided to risk seeker and risk averse. Therefore, the study of neural corelates of risk preferences is essential at the field of psychology and psychiatry. The current study aimed to examine and compare an ERP component named P300 between subjects with different risk preferences....

متن کامل

Valuing Time-Dependent CEV Barrier Options

We have derived the analytical kernels of the pricing formulae of the CEV knockout options with time-dependent parameters for a parametric class of moving barriers. By a series of similarity transformations and changing variables, we are able to reduce the pricing equation to one which is reducible to the Bessel equation with constant parameters. These results enable us to develop a simple and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000